Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 620(7972): 209-217, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438531

RESUMO

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Assuntos
Cromatina , Posicionamento Cromossômico , Cromossomos Humanos , Genoma Humano , Quinases da Glicogênio Sintase , Ensaios de Triagem em Larga Escala , Análise de Célula Única , Humanos , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamento Cromossômico/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/análise , DNA/metabolismo , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Quinases da Glicogênio Sintase/antagonistas & inibidores , Quinases da Glicogênio Sintase/deficiência , Quinases da Glicogênio Sintase/genética , Ensaios de Triagem em Larga Escala/métodos , Interfase , Reprodutibilidade dos Testes , RNA/análise , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos
2.
Environ Mol Mutagen ; 63(1): 37-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023215

RESUMO

This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, ß-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.


Assuntos
Antivirais/efeitos adversos , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Hidroxilaminas/efeitos adversos , Nucleosídeos/efeitos adversos , SARS-CoV-2/genética , Amidas/efeitos adversos , Amidas/uso terapêutico , Antivirais/uso terapêutico , Citidina/efeitos adversos , Citidina/uso terapêutico , Desoxiuridina/efeitos adversos , Desoxiuridina/análogos & derivados , Desoxiuridina/uso terapêutico , Genoma Humano/efeitos dos fármacos , Humanos , Hidroxilaminas/uso terapêutico , Mutagênese/efeitos dos fármacos , Nucleosídeos/uso terapêutico , Pirazinas/efeitos adversos , Pirazinas/uso terapêutico , Ribavirina/efeitos adversos , Ribavirina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos
3.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835928

RESUMO

Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.


Assuntos
Fatores Biológicos/genética , Dieta/efeitos adversos , Alimentos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Metilação de DNA/efeitos dos fármacos , Análise de Alimentos , Genoma Humano/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Humanos , Nutrigenômica , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
4.
Signal Transduct Target Ther ; 6(1): 299, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373448

RESUMO

Aflatoxin exposure is a crucial factor in promoting the development of primary hepatocellular carcinoma (HCC) in individuals infected with the hepatitis virus. However, the molecular pathways leading to its bioactivation and subsequent toxicity in hepatocytes have not been well-defined. Here, we carried out a genome-wide CRISPR-Cas9 genetic screen to identify aflatoxin B1 (AFB1) targets. Among the most significant hits was the aryl hydrocarbon receptor (AHR), a ligand-binding transcription factor regulating cell metabolism, differentiation, and immunity. AHR-deficient cells tolerated high concentrations of AFB1, in which AFB1 adduct formation was significantly decreased. AFB1 triggered AHR nuclear translocation by directly binding to its N-terminus. Furthermore, AHR mediated the expression of P450 induced by AFB1. AHR expression was also elevated in primary tumor sections obtained from AFB1-HCC patients, which paralleled the upregulation of PD-L1, a clinically relevant immune regulator. Finally, anti-PD-L1 therapy exhibited greater efficacy in HCC xenografts derived from cells with ectopic expression of AHR. These results demonstrated that AHR was required for the AFB1 toxicity associated with HCC, and implicate the immunosuppressive regimen of anti-PD-L1 as a therapeutic option for the treatment of AFB1-associated HCCs.


Assuntos
Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptores de Hidrocarboneto Arílico/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Aflatoxina B1/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Sistemas CRISPR-Cas/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Genoma Humano/efeitos dos fármacos , Vírus de Hepatite/patogenicidade , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065904

RESUMO

(1) Background: Chronic inflammation has been regarded as a risk factor for the onset and progression of human cancer, but the critical molecular mechanisms underlying this pathological process have yet to be elucidated. (2) Methods: In this study, we investigated whether interleukin (IL)-17-mediated inflammation was involved in cigarette smoke-induced genomic instability. (3) Results: Higher levels of both IL-17 and the DNA damage response (DDR) were found in the lung tissues of smokers than in those of non-smokers. Similarly, elevated levels of IL-17 and the DDR were observed in mice after cigarette smoke exposure, and a positive correlation was observed between IL-17 expression and the DDR. In line with these observations, the DDR in the mouse lung was diminished in IL-17 KO when exposed to cigarette smoke. Besides this, the treatment of human bronchial epithelium cells with IL-17 led to increased levels of the DDR and chromosome breakage. (4) Conclusions: These results suggest that cigarette smoke induces genomic instability at least partially through IL-17-mediated inflammation, implying that IL-17 could play an important role in the development of lung cancer.


Assuntos
Genoma Humano/efeitos dos fármacos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Brônquios/citologia , Células Cultivadas , Dano ao DNA , Células Epiteliais/citologia , Instabilidade Genômica , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fumaça
7.
Nucleic Acids Res ; 49(D1): D1138-D1143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33068428

RESUMO

The public Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is an innovative digital ecosystem that relates toxicological information for chemicals, genes, phenotypes, diseases, and exposures to advance understanding about human health. Literature-based, manually curated interactions are integrated to create a knowledgebase that harmonizes cross-species heterogeneous data for chemical exposures and their biological repercussions. In this biennial update, we report a 20% increase in CTD curated content and now provide 45 million toxicogenomic relationships for over 16 300 chemicals, 51 300 genes, 5500 phenotypes, 7200 diseases and 163 000 exposure events, from 600 comparative species. Furthermore, we increase the functionality of chemical-phenotype content with new data-tabs on CTD Disease pages (to help fill in knowledge gaps for environmental health) and new phenotype search parameters (for Batch Query and Venn analysis tools). As well, we introduce new CTD Anatomy pages that allow users to uniquely explore and analyze chemical-phenotype interactions from an anatomical perspective. Finally, we have enhanced CTD Chemical pages with new literature-based chemical synonyms (to improve querying) and added 1600 amino acid-based compounds (to increase chemical landscape). Together, these updates continue to augment CTD as a powerful resource for generating testable hypotheses about the etiologies and molecular mechanisms underlying environmentally influenced diseases.


Assuntos
Bases de Dados Factuais , Interação Gene-Ambiente , Genoma Humano/efeitos dos fármacos , Genômica/métodos , Medicamentos sob Prescrição/farmacologia , Xenobióticos/toxicidade , Bases de Dados de Compostos Químicos , Bases de Dados Genéticas , Genótipo , Humanos , Internet , Bases de Conhecimento , Especificidade de Órgãos , Fenótipo , Medicamentos sob Prescrição/química , Software , Toxicogenética/métodos , Xenobióticos/química
8.
Nucleic Acids Res ; 49(D1): D1144-D1151, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237278

RESUMO

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that provides information on drug-gene interactions and druggable genes from publications, databases, and other web-based sources. Drug, gene, and interaction data are normalized and merged into conceptual groups. The information contained in this resource is available to users through a straightforward search interface, an application programming interface (API), and TSV data downloads. DGIdb 4.0 is the latest major version release of this database. A primary focus of this update was integration with crowdsourced efforts, leveraging the Drug Target Commons for community-contributed interaction data, Wikidata to facilitate term normalization, and export to NDEx for drug-gene interaction network representations. Seven new sources have been added since the last major version release, bringing the total number of sources included to 41. Of the previously aggregated sources, 15 have been updated. DGIdb 4.0 also includes improvements to the process of drug normalization and grouping of imported sources. Other notable updates include the introduction of a more sophisticated Query Score for interaction search results, an updated Interaction Score, the inclusion of interaction directionality, and several additional improvements to search features, data releases, licensing documentation and the application framework.


Assuntos
Crowdsourcing , Bases de Dados Factuais , Bases de Dados Genéticas , Drogas em Investigação/farmacologia , Genoma Humano/efeitos dos fármacos , Medicamentos sob Prescrição/farmacologia , Bases de Dados de Compostos Químicos , Drogas em Investigação/química , Genótipo , Humanos , Internet , Bases de Conhecimento , Fenótipo , Medicamentos sob Prescrição/química , Software
9.
PLoS One ; 15(12): e0243905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33351840

RESUMO

Pyrrole-imidazole (Py-Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide-DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles.


Assuntos
Proteínas de Ligação a DNA/genética , Genoma Humano/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Nylons/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Imidazóis/farmacologia , Pirróis/farmacologia
11.
Eur J Pharmacol ; 889: 173641, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33045196

RESUMO

Although majority of acute promyelocytic leukemia (APL) patients achieve complete remission after the standard treatment, 5-10% of patients are shown to relapse or develop resistance to treatment. In such cases, medications that target epigenetic processes could become an appealing supplementary approach. In this study, we tested the anti-leukemic activity of histone deacetylase inhibitor Belinostat (PXD101) and histone methyltransferase inhibitor 3-Deazaneplanocin A combined with all-trans retinoic acid in APL cells NB4, promyelocytes resembling HL-60 cells and APL patients' cells. After HL-60 and NB4 cell treatment, ChIP-sequencing was performed using antibodies against hyper-acetylated histone H4. Hyper-acetylated histone H4 distribution peaks were compared in treated vs untreated HL-60 and NB4 cells. Results demonstrated that in treated HL-60 cells, the majority of peaks were distributed within the regions of proximal promoters, whereas in treated NB4 cells, hyper-acetylated histone H4 peaks were mainly localized in gene body regions. Further ChIP-seq data analysis revealed the changes in histone H4 hyper-acetylation in promoter/gene body regions of genes involved in cancer signaling pathways. In addition, quantitative gene expression analysis proved changes in various cellular pathways important for carcinogenesis. Epigenetic treatment down-regulated the expression of MTOR, LAMTOR1, WNT2B, VEGFR3, FGF2, FGFR1, TGFA, TGFB1, TGFBR1, PDGFA, PDGFRA and PDGFRB genes in NB4, HL-60 and APL patients' cells. In addition, effect of epigenetic treatment on protein expression of aforementioned signaling pathways was confirmed with mass spectrometry analysis. Taken together, these results provide supplementary insights into molecular changes that occur during epigenetic therapy application in in vitro promyelocytic leukemia cell model.


Assuntos
Epigênese Genética/genética , Genoma Humano/genética , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/antagonistas & inibidores , Histonas/genética , Leucemia Promielocítica Aguda/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Epigênese Genética/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Células HL-60 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
12.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970634

RESUMO

The integration of HIV DNA into the host genome contributes to lifelong infection in most individuals. Few studies have examined integration in lymphoid tissue, where HIV predominantly persists before and after antiretroviral treatment (ART). Of particular interest is whether integration site distributions differ between infection stages with paired blood and tissue comparisons. Here, we profiled HIV integration site distributions in sorted memory, tissue-resident, and/or follicular helper CD4+ T cell subsets from paired blood and lymphoid tissue samples from acute, chronic, and ART-treated individuals. We observed minor differences in the frequency of nonintronic and nondistal intergenic sites, varying with tissue and residency phenotypes during ART. Genomic and epigenetic annotations were generally similar. Clonal expansion of cells marked by identical integration sites was detected, with increased detection in chronic and ART-treated individuals. However, overlap between or within CD4+ T cell subsets or tissue compartments was only observed in 8 unique sites of the 3540 sites studied. Together, these findings suggest that shared integration sites between blood and tissue may, depending on the tissue site, be the exception rather than the rule and indicate that additional studies are necessary to fully understand the heterogeneity of tissue-sequestered HIV reservoirs.


Assuntos
DNA Viral/genética , Infecções por HIV/genética , Interações Hospedeiro-Patógeno/genética , Integração Viral/genética , Adulto , Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos/virologia , Genoma Humano/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Tecido Linfoide/virologia , Masculino , Subpopulações de Linfócitos T/virologia , Carga Viral/genética , Adulto Jovem
13.
BMC Cancer ; 20(1): 880, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928150

RESUMO

BACKGROUND: Tobacco smoking is associated with a unique mutational signature in the human cancer genome. It is unclear whether tobacco smoking-altered DNA methylations and gene expressions affect smoking-related mutational signature. METHODS: We systematically analyzed the smoking-related DNA methylation sites reported from five previous casecontrol studies in peripheral blood cells to identify possible target genes. Using the mediation analysis approach, we evaluated whether the association of tobacco smoking with mutational signature is mediated through altered DNA methylation and expression of these target genes in lung adenocarcinoma tumor tissues. RESULTS: Based on data obtained from 21,108 blood samples, we identified 374 smoking-related DNA methylation sites, annotated to 248 target genes. Using data from DNA methylations, gene expressions and smoking-related mutational signature generated from ~ 7700 tumor tissue samples across 26 cancer types from The Cancer Genome Atlas (TCGA), we found 11 of the 248 target genes whose expressions were associated with smoking-related mutational signature at a Bonferroni-correction P < 0.001. This included four for head and neck cancer, and seven for lung adenocarcinoma. In lung adenocarcinoma, our results showed that smoking increased the expression of three genes, AHRR, GPR15, and HDGF, and decreased the expression of two genes, CAPN8, and RPS6KA1, which were consequently associated with increased smoking-related mutational signature. Additional evidence showed that the elevated expression of AHRR and GPR15 were associated with smoking-altered hypomethylations at cg14817490 and cg19859270, respectively, in lung adenocarcinoma tumor tissues. Lastly, we showed that decreased expression of RPS6KA1, were associated with poor survival of lung cancer patients. CONCLUSIONS: Our findings provide novel insight into the contributions of tobacco smoking to carcinogenesis through the underlying mechanisms of the elevated mutational signature by altered DNA methylations and gene expressions.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/genética , Neoplasias/genética , Fumar Tabaco/efeitos adversos , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Humanos , Masculino , Análise de Mediação , Mutação/genética , Proteínas de Neoplasias/genética , Neoplasias/sangue , Neoplasias/induzido quimicamente , Neoplasias/patologia
14.
Clin Cancer Res ; 26(20): 5477-5486, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816946

RESUMO

PURPOSE: Malignant pleural mesothelioma (MPM) is considered an orphan disease with few treatment options. Despite multimodality therapy, the majority of MPMs recur and eventually become refractory to any systemic treatment. One potential mechanism underlying therapeutic resistance may be intratumor heterogeneity (ITH), making MPM challenging to eradicate. However, the ITH architecture of MPM and its clinical impact have not been well studied. EXPERIMENTAL DESIGN: We delineated the immunogenomic ITH by multiregion whole-exome sequencing and T-cell receptor (TCR) sequencing of 69 longitudinal MPM specimens from nine patients with resectable MPM, who were treated with dasatinib. RESULTS: The median total mutation burden before dasatinib treatment was 0.65/Mb, similar with that of post-dasatinib treatment (0.62/Mb). The median proportion of mutations shared by any given pair of two tumor regions within the same tumors was 80% prior to and 83% post-dasatinib treatment indicating a relatively homogenous genomic landscape. T-cell clonality, a parameter indicating T-cell expansion and reactivity, was significantly increased in tumors after dasatinib treatment. Furthermore, on average, 82% of T-cell clones were restricted to individual tumor regions, with merely 6% of T-cell clones shared by all regions from the same tumors indicating profound TCR heterogeneity. Interestingly, patients with higher T-cell clonality and higher portion of T cells present across all tumor regions in post-dasatinib-treated tumors had significantly longer survival. CONCLUSIONS: Despite the homogeneous genomic landscape, the TCR repertoire is extremely heterogeneous in MPM. Dasatinib may potentially induce T-cell response leading to improved survival.


Assuntos
Dasatinibe/administração & dosagem , Mesotelioma Maligno/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Evolução Clonal/genética , Dasatinibe/efeitos adversos , Evolução Molecular , Feminino , Heterogeneidade Genética , Genoma Humano/efeitos dos fármacos , Genômica , Humanos , Masculino , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Sequenciamento do Exoma
15.
Signal Transduct Target Ther ; 5(1): 152, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32811807

RESUMO

Laboratory research and pharmacoepidemiology provide support for metformin as a potential antitumor agent. However, the lack of a clear understanding of the indications of metformin limits its efficacy. Here, we performed a genome-wide CRISPR knockout negative screen to identify potential targets that might synergize with metformin. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells after 18 days of metformin treatment (T18) compared to those of the untreated cells at day 0 (T0) yielded candidate genes. Knockdown of a group of cyclin-dependent kinases (CDKs), including CDK1, CDK4, and CDK6, confirmed the results of the screen. Combination treatment of the CDKs inhibitor abemaciclib with metformin profoundly inhibited tumor viability in vitro and in vivo. Although cell cycle parameters were not further altered under the combination treatment, investigation of the metabolome revealed significant changes in cell metabolism, especially with regard to fatty acid oxidation, the tricarboxylic acid cycle and aspartate metabolism. Such changes appeared to be mediated through inhibition of the mTOR pathway. Collectively, our study suggests that the combination of CDKs inhibitor with metformin could be recognized as a potential therapy in future clinical applications.


Assuntos
Proteína Quinase CDC2/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Ácido Aspártico/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Sistemas CRISPR-Cas/genética , Ciclo do Ácido Cítrico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Genoma Humano/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Camundongos , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-32522347

RESUMO

Recent years have witnessed an expansion of mutagenesis research focusing on experimentally modeled genome-scale mutational signatures of carcinogens and of endogenous processes. Experimental mutational signatures can explain etiologic links to patterns found in human tumors that may be linked to same exposures, and can serve as biomarkers of exposure history and may even provide insights on causality. A number of innovative exposure models have been employed and reported, based on cells cultured in monolayers or in 3-D, on organoids, induced pluripotent stem cells, non-mammalian organisms, microorganisms and rodent bioassays. Here we discuss some of the latest developments and pros and cons of these experimental systems used in mutational signature analysis. Integrative designs that bring together multiple exposure systems (in vitro, in vivo and in silico pan-cancer data mining) started emerging as powerful tools to identify robust mutational signatures of the tested cancer risk agents. We further propose that devising a new generation of cell-based models is warranted to streamline systematic testing of carcinogen effects on the cell genomes, while seeking to increasingly supplant animal with non-animal systems to address relevant ethical issues and accentuate the 3R principles. We conclude that the knowledge accumulating from the growing body of signature modelling investigations has considerable power to advance cancer etiology studies and to support cancer prevention efforts through streamlined characterization of cancer-causing agents and the recognition of their specific effects.


Assuntos
Carcinógenos/toxicidade , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Neoplasias/induzido quimicamente , Animais , Análise Mutacional de DNA/métodos , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Humanos , Mutagênese/genética , Mutação/genética
17.
Crit Rev Eukaryot Gene Expr ; 30(1): 85-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421987

RESUMO

Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) is a complex disease, leading to the damage of multiple systems. The pathogen that triggers this sophisticated disease is still unknown. The aim of this study was to identify gene signatures during IVIG-resistant KD and uncover their potential mechanisms. The gene expression profiles of GSE18606 were downloaded from the GEO database. The GSE18606 dataset contained eight IVIG-resistant KD samples and nine healthy age-appropriate controls. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. In total, 73 DEGs were identified in IVIG-resistant KD, including 58 upregulated genes and 15 downregulated genes. GO analysis results showed that DEGs were significantly enriched in biological processes of neutrophil degranulation, neutrophil mediated immunity, and neutrophil activation involved in immune response. Among them, 10 hub genes (S100A8, S100A9, S100A12, HGF, LCN2, LY96, CTGF, MMP8, IRAK3, and SLPI) with a high degree of connectivity were selected. The present study indicated that the identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of IVIG-resistant KD, and might be used as molecular targets and diagnostic biomarkers for the treatment of IVIG-resistant KD.


Assuntos
Resistência a Medicamentos/genética , Imunoglobulinas Intravenosas/efeitos adversos , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Mapas de Interação de Proteínas/genética , Pré-Escolar , Biologia Computacional , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ontologia Genética , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Lactente , Masculino , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/imunologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/imunologia , Software , Transcriptoma/genética
18.
J Mol Endocrinol ; 64(4): R45-R56, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32229699

RESUMO

Molecular endocrinology of vitamin D is based on the activation of the transcription factor vitamin D receptor (VDR) by the vitamin D metabolite 1α,25-dihydroxyvitamin D3. This nuclear vitamin D-sensing process causes epigenome-wide effects, such as changes in chromatin accessibility as well as in the contact of VDR and its supporting pioneer factors with thousands of genomic binding sites, referred to as vitamin D response elements. VDR binding enhancer regions loop to transcription start sites of hundreds of vitamin D target genes resulting in changes of their expression. Thus, vitamin D signaling is based on epigenome- and transcriptome-wide shifts in VDR-expressing tissues. Monocytes are the most responsive cell type of the immune system and serve as a paradigm for uncovering the chromatin model of vitamin D signaling. In this review, an alternative approach for selecting vitamin D target genes is presented, which are most relevant for understanding the impact of vitamin D endocrinology on innate immunity. Different scenarios of the regulation of primary upregulated vitamin D target genes are presented, in which vitamin D-driven super-enhancers comprise a cluster of persistent (constant) and/or inducible (transient) VDR-binding sites. In conclusion, the spatio-temporal VDR binding in the context of chromatin is most critical for the regulation of vitamin D target genes.


Assuntos
Cromatina/fisiologia , Vitamina D/metabolismo , Vitamina D/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Cromatina/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Genoma Humano/efeitos dos fármacos , Genoma Humano/fisiologia , Humanos , Ligação Proteica/genética , Receptores de Calcitriol/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ativação Transcricional/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina D/fisiologia
19.
Nature ; 580(7804): 517-523, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322066

RESUMO

A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Mutação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/imunologia , Reparo de Erro de Pareamento de DNA/genética , Frequência do Gene , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Glioma/imunologia , Humanos , Masculino , Camundongos , Repetições de Microssatélites/efeitos dos fármacos , Repetições de Microssatélites/genética , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Fenótipo , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Análise de Sequência de DNA , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Genes (Basel) ; 11(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260267

RESUMO

Schizophrenia (SCZ) is a psychiatric disorder characterized by both positive and negative symptoms, including cognitive dysfunction, decline in motivation, delusion and hallucinations. Antipsychotic agents are currently the standard of care treatment for SCZ. However, only about one-third of SCZ patients respond to antipsychotic medications. In the current study, we have performed a meta-analysis of publicly available whole-genome expression datasets on Brodmann area 46 of the brain dorsolateral prefrontal cortex in order to prioritize potential pathways underlying SCZ pathology. Moreover, we have evaluated whether the differentially expressed genes in SCZ belong to specific subsets of cell types. Finally, a cross-tissue comparison at both the gene and functional level was performed by analyzing the transcriptomic pattern of peripheral blood mononuclear cells of SCZ patients. Our study identified a robust disease-specific set of dysfunctional biological pathways characterizing SCZ patients that could in the future be exploited as potential therapeutic targets.


Assuntos
Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Transcriptoma/genética , Antipsicóticos/uso terapêutico , Encéfalo/patologia , Mapeamento Encefálico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Córtex Pré-Frontal/patologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...